Impfstoff gegen Multiple Sklerose entdeckt?

Einen aussichtsreichen Ansatz für eine neue Therapieoption gegen Multiple Sklerose (MS) haben Wissenschaftler der Universitätsmedizin Mainz und des durch die Deutsche Forschungsgemeinschaft geförderten Transregio Sonderforschungsbereich 128 entdeckt. 

Sie fanden heraus, dass bei MS-Patienten auf der Oberfläche bestimmter T-Zellen das Protein Prohibitin hochkonzentriert vorkommt und dass dieser Effekt mit einer hohen Aktivität der mitogenaktivierten Proteinkinase (MAPK) CRAF einhergeht.

Die Forscher konnten im Modell zeigen, dass sich die Interaktion zwischen Prohibitin und CRAF mittels eines Polysaccharid-Impfstoffs unterbrechen und somit ein Anstieg an anti-entzündlichen regulatorischen T-Zellen erreichen lässt. Dadurch nimmt die Schwere der Erkrankung im Versuchsmodell der MS ab. Diese Forschungserkenntnis haben die Wissenschaftler kürzlich im The EMBO Journal veröffentlicht.

Gegenwärtig gilt: MS ist nicht heilbar. Es lassen sich lediglich auf therapeutischem Wege die Symptome lindern. Vor diesem Hintergrund lässt der vielversprechende Ansatz der Wissenschaftler aus der Cell Biology Unit, der Klinik für Neurologie und des Forschungszentrums für Immuntherapie (FZI) der Johannes Gutenberg-Universität Mainz für eine neue Therapieoption gegen MS aufhorchen.

Im Versuchsmodell der Multiplen Sklerose haben die Wissenschaftler um Univ.-Prof. Dr. Frauke Zipp und Univ.-Prof. Dr. Krishnaraj Rajalingam von der Universitätsmedizin Mainz herausgefunden, dass auf der Oberfläche von Interleukin-17 (IL-17) produzierenden Th17-Zellen (eine Subpopulation von T-Zellen) die Proteine Prohibitin 1 und 2 hochreguliert sind. IL-17 ist ein Botenstoff des Immunsystems.

„Diese verstärkte Oberflächenexpression der Prohibitine 1 und 2 ging mit einer gleichermaßen hohen Aktivität der MAP Kinase CRAF und der nachgeschalteten MAP Kinase Signalweiterleitung einher. Diese Beobachtung machten wir nicht nur bei gesunden Menschen, sondern auch für Th17-Zellen von Patienten, die an MS leiden“, unterstreicht Prof. Dr. Frauke Zipp, Direktorin der Klinik und Poliklinik für Neurologie der Universitätsmedizin Mainz. MAP Kinasen werden durch Wachstumsfaktoren aktiviert.

Es kommt zu einer mehrstufigen Signalkaskade (i.S. einer Signalweiterleitung), die letztlich grundlegende biologische Prozesse wie beispielsweise das Zellwachstum reguliert. In vielen Tumorerkrankungen sind Bestandteile dieses Signalweges verändert, was unter anderem ein verstärktes Wachstum von Tumorzellen begünstigen kann.

Auf Grundlage dieser Erkenntnis wollten die Mainzer Wissenschaftler herausfinden, ob und gegebenenfalls wie sich die Interaktion zwischen Prohibitin und CRAF nicht nur unterbrechen sondern verhindern lässt. Im Rahmen ihrer Studie verwendeten sie unter anderem den von der Weltgesundheitsbehörde (WHO) zur Behandlung von Typhus zugelassenen Impfstoff Vi Polysaccharid.

Dieser Impfstoff unterbricht die Interaktion zwischen CRAF und Prohibitin und stellt somit eine neue Art von Kinasehemmer dar. Es zeigte sich, dass dieser Impfstoff in der Lage ist, die Aktivität von CRAF in behandelten Zellen stark zu verringern. „In weiterführenden Untersuchungen im Krankheitsmodell konnten wir zeigen, dass die Anzahl anti-entzündlicher regulatorischer T-Zellen anstieg und sich dadurch die Intensität der MS deutlich verringern ließ“, so der Zellbiologe Prof. Dr. Krishnaraj Rajalingam, Leiter der Cell Biology Unit.

„In einem nächsten Schritt planen wir, diese Erkenntnisse auch auf andere Autoimmunerkrankungen wie beispielsweise die rheumatoide Arthritis zu übertragen“, so der Inhaber einer Heisenberg Professur für Zellbiologie und Fellow des Gutenberg Forschungskollegs der Johannes Gutenberg-Universität.

Auch der Sprecher und Koordinator des FZI, Univ.-Prof. Dr. Tobias Bopp, bewertet den neuen Ansatz als Erfolg versprechend, zumal Wirkstoffe, die in der Lage sind, Kinasen zu hemmen, bereits als Therapieform Einzug in die Patientenversorgung gehalten haben. „Die zielgerichtete Therapie von Tumor- sowie Autoimmunerkrankungen mittels Kinasehemmern ist ein vielsprechender Ansatz, der bereits klinische Anwendung findet.“

Quelle und 2. Foto: Universitätsmedizin Mainz


Multiple Sklerose: Schäden der Nervenzellfortsätze sind umkehrbar

Bei der Autoimmunerkrankung Multiple Sklerose (MS) kommt es zu Überreaktionen des Immunsystems. Infolgedessen werden gesunde Nervenzellen attackiert, was zu einer fortlaufenden Schädigung der Nervenzellfortsätze (im Fachjargon Axone) führt. 

Die Degeneration der Nervenzellfortsätze ist allerdings umkehrbar:

Neurowissenschaftler der Universitätsmedizin Mainz haben jetzt herausgefunden, dass Interleukin-4 (IL-4), ein Botenstoff des Immunsystems, in der Lage ist, die Schädigung des Axons umzukehren. Die Forscher gehen davon aus, dass die neuronale IL-4 Behandlung möglicherweise eine neue therapeutische Strategie darstellt, um Neurodegeneration in der chronischen MS zu beheben.

Die Forschungsergebnisse wurden jetzt in der renommierten Fachzeitschrift „Science Translational Medicine“ veröffentlicht.

MS ist eine Autoimmunerkrankung des zentralen Nervensystems (ZNS). In welchem Maße Betroffene von MS beeinträchtigt werden, hängt in hohem Maße davon ab, wie viele Axone im Krankheitsverlauf eine irreversible Schädigung davon tragen. Das wissen MS-Forscher bereits seit etwa 20 Jahren.

Konkret bewirken die entzündlichen Attacken im Gehirn von MS-Patienten krankhafte Schwellungen beziehungsweise Schädigungen der Axone, die jedoch reversibel sein können. Die Idee war somit, dass es körpereigene Faktoren geben muss, die Schädigungsprozesse in Schach halten oder gar reparieren.

Im Modellversuch konnten die Direktorin der Klinik und Poliklinik für Neurologie der Universitätsmedizin Mainz, Univ.-Prof. Dr. Frauke Zipp, und ihr Team jetzt zeigen, dass das Immunzytokin IL-4 direkt in den Nervenzellen einen schnellen Signalweg anstoßen und die Neurodegeneration aufhalten kann.

Ferner beobachteten sie, dass sich mit Hilfe von IL-4 sogar Wachstumsprozesse der Nervenfortsätze ankurbeln lassen. Die Effekte des IL-4 stellen sich unabhängig vom Immunsystem ein – so weitere Erkenntnisse der Forscher um Prof. Zipp.

„Gegenwärtig verfolgen die meisten Strategien zur Behandlung von MS zwei Kernziele: Entweder gilt es zu verhindern, dass körpereigene, autoaggressive Immunzellen in das zentrale Nervensystem (ZNS) eindringen. Oder es geht darum, Entzündungsprozesse im ZNS zu hemmen“, berichtet Prof. Zipp:

„Um eine neue therapeutische Strategie zu entwickeln, mit der sich die axonalen Schäden bekämpfen lassen, halten wir die neuronale IL-4-Behandlung für einen vielversprechenden Ansatz. Denn die Protektion oder gar Regeneration der Nervenbahnen könnten den chronischen Verlauf der MS erheblich verbessern.“

Nun wollen Prof. Zipp und Dr. Christina Vogelaar, die maßgeblich in das Forschungsprojekt eingebunden war, der Frage nachgehen, in welcher Form sich eine solche Therapie tatsächlich eignet, um bei MS-Patienten axonale Schäden zu beseitigen.

Neben Wissenschaftlern des Forschungszentrums Translationale Neurowissenschaften (FTN) der Johannes Gutenberg Universität Mainz (JGU) waren noch weitere Forscher an der aktuellen Forschungsarbeit beteiligt. Dazu zählen das Department of Pathology, Neuropatholgy am Albert Einstein College of Medicine in New York, das Center for Brain Immunology and Glia am Department of Neuroscience der University of Virginia und das Insitut für Translationale Neurowissenschaften der Universitätsmedizin Münster.

Originalpublikation: Christina Vogelaar, Shibajee Mandal, Steffen Lerch, Katharina Birkner, Jerome Birkenstock, Ulrike Bühler, Andrea Schnatz, Cedric S. Raine, Stefan Bittner, Johannes Vogt, Jonathan Kipnis, Robert Nitsch, Frauke Zipp. DOI: 10.1126/scitranslmed.aao2304

Quelle: Pressemitteilung der Universitätsmedizin Mainz

 


Neuer Therapieansatz für Multiple Sklerose?

Protein EGFL7 begrenzt Einwanderung von Immunzellen ins Gehirn

Einen möglichen neuen Therapie-Ansatz bei der Behandlung von Patienten mit Multiple Sklerose haben Wissenschaftler der Universitätsmedizin Mainz in Kooperation mit Forschern der Universität von Montreal entdeckt.

Im Modellversuch und durch Experimente an humanen Endothelzellen fanden sie heraus, dass das Protein EGFL7 die Einwanderung von Immunzellen in das Zentrale Nervensystem begrenzt, in dem es die Blut-Hirn-Schranke stabilisiert.

Nachzulesen sind diese Erkenntnisse in der aktuellen Ausgabe der renommierten Fachzeitschrift „Nature Communications“.

Die Autoimmunerkrankung Multiple Sklerose (MS) ist eine der häufigsten mit Behinderung einhergehende Erkrankung junger Erwachsener in den Industrienationen. Bei dieser greift das eigene Immunsystem das zentrale Nervensystem (ZNS) an: Immunzellen (T-Zellen) wandern über die Blut-Hirn-Schranke – die physiologische Barriere zwischen Blutkreislauf und ZNS – ins Gehirn und schädigen dort die schützende Hülle (Myelinschicht) der Nervenfasern.

Dadurch kommt es zu einem Abbau bzw. Funktionsverlust von Nervenzellen und in der Folge zu neurologischen, mit Behinderung einhergehenden Symptomen.

Diesen krankheitsauslösenden Mechanismus durch neue Therapien zu unterbinden, ist Ziel der MS-Forschung. Die Anwendung des Proteins EGFL7 in den Fokus ihrer Forschungsarbeiten gestellt, haben Wissenschaftler um Dr. Timo Uphaus und Prof. Dr. Frauke Zipp von der Klinik und Poliklinik für Neurologie der Universitätsmedizin Mainz zusammen mit Dr. Catherine Larochelle (Universität Montreal) sowie mit Prof. Mirko Schmidt und Forscherkollegen vom Deutschen Konsortium für Translationale Krebsforschung (DKTK).

Damit haben sie sich für einen neuen, pathophysiologischen Forschungsansatz entschieden, denn üblicherweise spielt EGFL7 in der MS-Forschung keine Rolle. Aus der Tumorforschung beispielsweise zu Mammakarzinomen ist jedoch bekannt, dass EGFL7 einen Einfluss auf die Einwanderung von Immunzellen in das Tumorgewebe hat.

Da auch bei der MS die Einwanderung von Immunzellen in das Gehirn ein wesentlicher Einflussfaktor ist, wählten die Forscher dieses Protein und seine Wirkungen auf die Autoimmunerkrankung MS als Forschungsgegenstand. Mit Erfolg! Denn mit diesem Forschungsansatz ist es ihnen gelungen, einen möglichen neuen MS-Therapieansatz aufzeigen.

Basis dessen könnten folgende neu gewonnene Erkenntnisse sein: Ist das Nervengewebe des ZNS entzündet, herrschen im Gehirn inflammatorische Bedingungen. Erfolgt unter diesen eine vermehrte Ausschüttung von EGFL7, dann führt das dazu, dass Immunzellen an EGFL7 binden, somit festgehalten werden und eine weitere Einwanderung ins ZNS verhindert wird.

Wie die Wissenschaftler im Rahmen ihrer Forschungen herausfanden, ist EGFL7 im Gefäßsystem von MS-Patienten hochreguliert, also zahlreich vorhanden. EGFL7 wird von Endothelzellen der Blut-Hirn-Schranke abgegeben. Es bewirkt, dass die Immunzellen im perivaskulären Raum festgehalten werden.

Im nächsten Schritt beobachten die Wissenschaftler im Modellversuch, dass durch die Anwendung von EGFL7 die Blut-Hirn-Schranke weniger durchlässig wurde. EGFL7 minderte also das verstärkte Eindringen von Immunzellen in das ZNS und wirkte somit dem krankheitsauslösenden Mechanismus entgegen. Durch die stabilere Blut-Hirn-Schranke sank die Immunzellinfiltration in das ZNS, wodurch sich wiederum der gesamte klinische Verlauf verbesserte.

Im Rahmen ihrer Forschungen ist es den Wissenschaftlern zudem gelungen, diese experimentellen Ergebnisse in einem humanen Blut-Hirn-Schranken-Modell zu bestätigen: Ihre Untersuchungen zeigten auch in isolierten menschlichen Endothelzellen eine verminderte Migration von Immunzellen.

Wie die Wissenschaftler weiterhin feststellten, ist es prinzipiell möglich, die positiven Einflüsse von EGFL7 auf die Einwanderung von Immunzellen in das ZNS und die Stabilität der Blut-Hirn-Schranke für die Therapie von Multiple Sklerose nutzbar zu machen.

Quelle: Pressemitteilung der Universität Mainz


Neue Forschungen könnten Therapie bei Multiple Sklerose verbessern

T-Zellen sind ein wichtiger Teil des Immunsystems. Sie können aber nicht nur Krankheitserreger ausschalten, sondern auch selbst zu einer Gefahr werden. Forscherinnen und Forscher der Technischen Universität München (TUM) und der Universitätsmedizin Mainz haben herausgefunden, wann bestimmte T-Zellen zu krankheitserregenden T-Zellen werden, die mit Multipler Sklerose in Verbindung gebracht werden.

Die Ergebnisse erklären, warum bestimmte Behandlungsansätze nicht zuverlässig wirken. Sie sind in der aktuellen Ausgabe von „nature immunology“ veröffentlicht.

FOTO: Die dendritische Zelle und die T-Zelle bei der Clusterbildung (rechts im Bild)

Multiple Sklerose ist eine Autoimmunerkrankung, also eine Krankheit, bei der das Abwehrsystem des Körpers die eigenen Zellen angreift. In diesem Fall sorgen veränderte T-Zellen dafür, dass die Myelinhülle von Nervenzellen abgebaut wird. Diese Schicht schützt die eigentliche Nervenbahn und sorgt erst dafür, dass Informationen übertragen werden können.

Welche Ziele im Körper T-Zellen ansteuern und welche Wirkung sie dort entfalten, hängt von verschiedenen Faktoren ab. Professor Thomas Korn, Inhaber des Lehrstuhls für Experimentelle Neuroimmunologie der TUM, konnte bereits in einer früheren Studie zeigen, dass im Fall der T-Zellen, die zur Schädigung von Myelinhüllen im zentralen Nervensystem führen, ein Stoff namens Interleukin-6 eine wichtige Rolle spielt.

Die „Anleitung“ dafür, gewebeschädigende Wirkung zu entfalten, erhalten die T-Zellen in Lymphknoten. Sie treffen dort mit einer bestimmten Variante sogenannter dendritischer Zellen zusammen. Diese zeigen den T-Zellen an, beim Kontakt mit welchen Substanzen sie in anderen Teilen des Körpers eine Immunreaktion auslösen sollen. Im Fall von Fremdantigenen, z. B. Bestandteilen von Viren oder Bakterien ist das sinnvoll. Sie können dadurch aus dem Gewebe eliminiert werden. Handelt es sich aber um Autoantigene, also um Bestandteile köpereigener Substanzen wie der Myelinhülle, leiten die T-Zellen eine Immunreaktion gegen den Körper selbst ein.

Foto: HMKWenn dendritische Zellen nicht nur das Myelin als „Zielsubstanz“ anzeigen, sondern zugleich den Botenstoff Interleukin-6, kurz IL-6, ausschütten, wird in den T-Zellen eine Art molekularer Schalter umgelegt. Sie werden dann pathogen, entfalten also besonders gewebsschädigende Eigenschaften.

„Mit diesem scheinbar klaren Zusammenhang gab es aber ein großes Problem“, erzählt Thomas Korn. „Die T-Zellen wurden nicht immer pathogen, wenn IL-6 ausgeschüttet wurde.

Gemeinsam mit Forscherinnen und Forschern um Professor Ari Waisman, Leiter des Instituts für Molekulare Medizin an der Universitätsmedizin Mainz, haben Korn und sein Team jetzt eine Erklärung für dieses Phänomen. „Entscheidend ist nicht nur, ob die dendritischen Zellen den T-Zellen mit IL-6 Signale senden“, sagt Ari Waisman, „Es geht darum, auf welchem Weg sie das tun.“

Bislang waren zwei Wege bekannt, auf denen die dendritischen Zellen IL-6 an die T-Zellen weitergeben. Sie können den Botenstoff zum einen in ihr Umfeld abgeben, die Moleküle sind löslich und bilden eine Wolke im engen Umfeld der dendritischen Zelle. Zum anderen können lösliches IL-6 und löslicher IL-6 Rezeptor einen Komplex bilden, der in bestimmten Zielzellen ein Signal auslösen kann („Trans-Signaling“).

Korn und Waisman fanden heraus, dass IL-6 weder auf die eine noch auf die andere Weise die entscheidende Veränderung in den T-Zellen auslöst. Stattdessen identifizierten sie einen dritten Weg. Die dendritischen Zellen können IL-6 auch direkt über ihre Oberfläche weitergeben. Diesen Modus der Signalübermittlung bezeichnen Korn und Waisman als „Cluster Signaling“. Namensgebend ist der Haufen (engl. Cluster), den die dendritische und die T-Zelle dabei bilden.

Das Besondere an diesem „dritten“ IL-6-Signalmodus ist, dass es eine enge zeitliche Kopplung des IL-6 Signals mit anderen Signalen gibt, die die T-Zelle von der dendritischen Zelle empfängt. Wahrscheinlich führt diese zeitliche Kopplung dazu, dass die T-Zelle besonders aggressiv wird und ihr Zielantigen hocheffizient angreift. Derzeit untersucht das Team um Thomas Korn das genaue Zusammenspiel der verschiedenen Signale.

Quelle und Fortsetzung hier: http://www.unimedizin-mainz.de/presse/pressemitteilungen/aktuellemitteilungen/newsdetail/article/multiple-sklerose-neu-entdeckter-signalmechanismus-macht-t-zellen-pathogen.html


England: Adulte Stammzellen heilen Patienten bei Multiple Sklerose

Von Dr. med. Edith Breburda

Engländer, die an Multiple Sklerose erkrankt sind, berichten über erstaunliche Heilungen, nachdem ihnen eigene adulte Stammzellen verabreicht wurden. Prof. Dr. Richard Burt von der Amerikanischen Northwestern-Universität entwickelte die Behandlung, an der Patienten in England im Rahmen eines klinischen Versuches teilnehmen. Multiple Sklerose ist eine unter weltweit hunderten von Krankheiten, die erfolgreich mit adulten Stammzellen therapiert werden. Dr. Breburda

Die 25-jährige Mutter, Holly Drewry, suchte im Rollstuhl das Royal-Hallamshire-Krankenhaus in Sheffield auf. Nach einer einmaligen Behandlung mit adulten (körpereigenen) Stammzellen, die man aus ihrem Knochenmark entnommen hatte, konnte sie wieder gehen.

„Innerhalb von Tagen habe ich gemerkt, dass es mir besser geht. Es war ein Wunder. Ich konnte vorher nicht aufrecht gehen. Ich wagte es nicht, meine kleine Tochter Isla zu halten, aus Sorge, sie fallen zu lassen. Es ist eine sehr beängstigender Zustand. Ich fragte mich immer, wie das noch alles enden sollte“, sagt sie in einem Interview mit BBC.

Das Röntgenbild der Patientin zeigte ein Abklingen der Symptome. Ihr fehlgeschaltetes Immunsystem wurde durch Chemotherapie zerstört. Danach verabreichte man die eigenen Knochenmarksstammzellen, die ihre Immunität wieder herstellte. „Ich ging zu Fuß vom Krankenhaus nach Hause. Dort umarmte ich Isla. Es war ein überwältigendes Gefühl. Es war ein Wunder“, sagt Drewry.

Basil Sharrack stimmt dem Bericht der Patientin zu. „In den drei Jahren, in denen wir die neue Behandlung durchführen, haben wir schon viele Wunder gesehen. Es ist ein Wort, dass ich nicht oft gebrauche. Wir haben jedoch tatsächlich profunde neurologische Fortschritte gesehen“, berichtet er dem Telegraph. 

Noch imposanter ist die Genesung von Steven Storey. Ein Triathlet, der durch Multiple Sklerose komplett gelähmt war. Er konnte keinen einzigen Muskel bewegen. Aber innerhalb von neun Behandlungstagen, in denen er seine eigenen Knochenmarkszellen injiziert bekam, konnte er eine Zehe bewegen und nach 10 Monaten zwei Kilometer schwimmen. „Es war großartig. Ich war zurück im Leben“, sagt Steven.

Die noch in der klinischen Versuchsphase liegende Britische Therapie mit adulten Stammzellen wurde durch Dr. Burt entwickelt. Erfolgreich behandelte er in den letzten 14 Jahren 23 Krankheiten. Es ist ein weiterer Beweis dafür, dass adulte Stammzellen seit Jahren erfolgreich Krankheiten heilen.

Bis heute kann man das nicht über embryonale Stammzellen sagen. Im Jahr 2009 verkündete der berühmte Fernseharzt Dr. Oz gegenüber Oprah Winfrey: „Ich glaube, die Stammzellen-Debatte ist vorüber. Das Problem mit embryonalen Stammzellen ist, dass sie aus Embryos entstehen. Wir alle waren mal Embryos. Es ist jedoch schwer, die Entwicklung von embryonalen Stammzellen zu kontrollieren, und so verwandeln sie sich oft in Krebszellen.“ (1)

Seit der Isolierung der ersten Stammzellen versuchen Wissenschaftler, mit ethisch stark umstrittenen menschlichen embryonalen Stammzellen Krankheiten wie z. B. Alzheimer, Krebs, Diabetes oder Parkinson zu heilen. Trotz vieler Fortschritte im Labor und im Tierversuch gibt es bis jetzt noch keine sichere Stammzelltherapien mit embryonalen Stammzellen (2).

Literatur:
1) Weatherbe S.: MS patient see miraculous healings after adult stem cell treatments. LifeSiteNews , 20. Jan. 2016BookCoverImage
2) E. Breburda, Reproduktive Freiheit, free for what? ·  ISBN-10: 0692447261·  ISBN-13: 978-0692447260

Unsere Autorin Dr. med. Edith Breburda ist Bioethik-Expertin und Veterinär-Medizinerin (Tierärztin); sie lebt in den USA (Bundesstaat Wisconsin).

Weiterführende Literatur, Artikel und Bücher von Dr. Edith Breburda: http://scivias-publisher.blogspot.com/p/blog-page.html

Ediths Buch-Neuerscheinung REPRODUKTIVE FREIHEIT vom Juni 2015: https://charismatismus.wordpress.com/2015/06/20/neuerscheinungbuch-empfehlung-reproduktive-freiheit-von-dr-edith-breburda/

Dieses sachkundige und zugleich verständliche Buch “Reproduktive Freiheit” (viele bioethische und aktuelle Themen) kann portofrei für 22,30 Euro bei uns bezogen werden: felizitas.kueble@web.de (Tel. 0251-616768)