Der Mars-Maulwurf des DLR hämmert sich erstmals in den Untergrund des Roten Planeten

Am 28. Februar 2019 hat sich der Marsmaulwurf des DLR (Deutschen Zentrums für Luft- und Raumfahrt) erstmals vollautomatisch in den Marsboden gehämmert. In einem ersten Schritt drang er über eine Phase von vier Stunden mit 4000 Hammerschlägen etwa 18 bis 50 Zentimeter in den Marsboden ein.

GRAFIK: Nach ihrem Start landete die NASA-Sonde InSight etwas nördlich des Mars-Äquators und entfaltete seine Solarpanele. (Foto: NASA/JPL-Caltech)

„Bei seinem Weg in die Tiefe ist der Maulwurf anscheinend auf einen Stein getroffen, hat sich um etwa 15 Grad geneigt und diesen beiseitegedrückt oder sich an ihm vorbeigeschoben“, sagt der wissenschaftliche Leiter des HP3-Experiments Prof. Tilman Spohn:

„Anschließend hat er sich in fortgeschrittener Tiefe gegen einen weiteren Stein gearbeitet, bis die geplante vierstündige Betriebszeit der ersten Sequenz abgelaufen war.“

Bei Tests auf der Erde zeigte sich, dass die stabförmige Rammsonde in der Lage ist, kleinere Steine zur Seite zu schieben, was allerdings sehr zeitintensiv ist.

Nach einer Abkühlpause wollen die Forscher den Maulwurf in einer zweiten Sequenz für erneut vier Stunden weiterhämmern lassen. In den Folgewochen mit weiteren Abschnitten wollen sie bei ausreichend porösem Untergrund eine Zieltiefe von drei bis fünf Metern erreichen. 

Dabei zieht der Maulwurf hinter sich ein mit Temperatursensoren bestücktes, fünf Meter langes Flachbandkabel in den Marsboden hinein.

Die Sonde pausiert nach jedem Schritt für etwa drei Marstage (Sol), um nach dem mehrstündigen Hämmern mit Reibung und Hitzeentwicklung etwa zwei Tage abzukühlen und dann bei ausreichender Tiefe die Wärmeleitfähigkeit des Bodens zu messen.

„Dazu wird eine Folie in der Hülle des Maulwurfs mit bekannter elektrischer Leistung für einige Stunden geheizt“, erklärt DLR-Planetenforscher Dr. Matthias Grott: „Der gleichzeitig gemessene Anstieg der Temperatur der Folie gibt uns dann ein Maß für die Wärmeleitfähigkeit des unmittelbar umgebenden Bodens.“

Ergänzend misst das am InSight-Lander angebrachte Radiometer die Temperatur des Marsbodens an der Oberfläche, die von leichten Plusgraden bis fast minus hundert Grad Celsius schwankt.

Quelle und ausführlicher Text hier: https://www.dlr.de/dlr/presse/desktopdefault.aspx/tabid-10172/213_read-32400/#/gallery/33593


Satellitenmission: Bewerbungsstart für bundesweiten Schülerwettbewerb StratoSAT

Jugend-Teams realisieren eigene „Mini-Satelliten-Missionen“

Der bundesweit ausgeschriebene Schülerwettbewerb StratoSAT ist eröffnet: Seit dem 24. November 2016 können Schülerteams ab 14 Jahren spannende Vorschläge zur Erforschung der Atmosphäre oder zur Fernerkundung der Erdoberfläche für ihre eigene „Mini-Satellitenmission“ bis zum 31. Januar 2017 bei der Ludwig-Maximilians-Universität in München einreichen. stratosatballons_sn_l

Insgesamt werden aus den Bewerbungen zehn Teams für den Wettbewerb ausgewählt.

Im Rahmen der Eröffnungsveranstaltung im Deutschen Zentrum für Luft- und Raumfahrt (DLR) in Oberpfaffenhofen konnten sich kürzlich rund 150 interessierte Schüler/innen, Lehrkräfte und Vertreter aus Politik und Industrie über das Schul- und Jugendprojekt „SatTec“ informieren (siehe Foto).

Zudem konnten sie an einem Vortrag zum Thema „Forschung mit Stratosphärenballons“ sowie an einer Führung durch das Galileo- und Raumfahrtkontrollzentrum teilnehmen.

Stratosphärenballons tragen Schüler-Sonden bis in 30 km Höhe

„Die Schülerteams haben die Möglichkeit, ihre erste eigene Quasi-Satellitenmission auf die Beine zu stellen: Diese reicht von der Planung, Bau und Tests der selbstentwickelten wissenschaftlichen Nutzlast, dem Ballonstart und -flug bis hin zur Auswertung der Daten“, berichtet Tobias Schüttler, SatTec-Projektleiter der LMU München.

Zunächst müssen die Schüler ihr Exposé mit Experimentiervorschlag und Projektplanung einreichen. Im Laufe des Wettbewerbs konstruieren, bauen und erproben die Teams dann eine eigene wissenschaftliche Nutzlast – den sogenannten „StratoSAT“ – die an einem Stratosphärenballon in etwa 30 Kilometer Höhe aufsteigen soll und dabei Daten zur Erforschung der Atmosphäre oder zur Fernerkundung der Erdoberfläche aufnimmt.

Jedes Team erhält für seine Mission ein Stratosphärenballon-Set, das neben dem Ballon selbst einen GPS-GSM-Tracker zur Bergung der Sonde, Akkus, Batterien, eine Styroporbox zum Schutz der Sonde, einen Fallschirm für den sicheren Abstieg sowie einen Datenlogger zur Messung von atmosphärischen Daten wie Luftdruck und Temperatur beinhaltet.

Quelle und vollständiger Artikel mit Bildern unter: http://www.dlr.de/dlr/presse/desktopdefault.aspx/tabid-10172/213_read-20179/year-all/#/gallery/25108


DLR: Sonde im Endspurt / Interessante Kraterlandschaften auf Zwergplanet Ceres

Geben die Himmelskörper Vesta und Ceres Aufschluß über die Entstehung unseres Sonnensystems?

Nur 46.000 Kilometer trennten die Dawn-Sonde noch von ihrem Ziel, dem Zwergplaneten Ceres, als die Kamera an Bord am 19. Februar 2015 neue Aufnahmen machte.
 .
Dabei beeindruckt Ceres vor allem mit seinen unterschiedlichen Kraterformen:
 .
Neben zahlreichen eher kleineren, flachen Kratern zeigen die Bilder auch solche Einschlagsbecken, in deren Mittelpunkt sich ein Berg aufgetürmt hat.

Ceres
Der Durchmesser des größten Körpers im Asteroidengürtel zwischen Mars und Jupiter beträgt rund 1000 Kilometer und so könnten einzelne Krater auf seiner Oberfläche daher einen Durchmesser von ungefähr 300 Kilometern haben.

Zur Zeit befindet sich die Sonde im Endspurt: Am 6. März 2015 soll sie Ceres erreichen und somit die erste Raumsonde sein, die einen Zwergplaneten aus der Nähe untersucht. Ab Mai 2015 beginnt das Deutsche Zentrum für Luft- und Raumfahrt (DLR) mit der Kartierung des Zwergplaneten.

Im Jahr 2007 wurde der Asteroid Vesta umkreist

Schwenkt Dawn in den Orbit um Ceres, ist dies schon der zweite Himmelskörper in den Tiefen des Weltalls, den die Mission erkundet: 2007 gestartet, umkreiste die Sonde 2011 den Asteroiden Vesta. Auch dort stießen die Wissenschaftler auf eine abwechslungsreiche Asteroidenoberfläche mit Kratern, Bergen, Canyons und Furchen.

„Auch Ceres zeigt bereits während des Anflugs die unterschiedlichsten Formen an seiner Oberfläche“, sagt Prof. Ralf Jaumann vom DLR-Institut für Planetenforschung. „Diese Strukturen weisen darauf hin, dass sich die Oberfläche von Ceres im Laufe der Zeit durch gewaltige Prozesse veränderte.“

Neben den Kratern sind auch hellere Regionen zu erkennen, die jedoch aus einer Entfernung von 46.000 Kilometern noch nicht gedeutet werden können – noch haben die Bilder eine Auflösung von nur vier Kilometern auf der Asteroidenoberfläche.

Befindet sich unter der Kruste von  Ceres ein Ozean?

Ceres ist für die Forscher besonders spannend, weil sie unter seiner Kruste einen Ozean vermuten.

Im Gegensatz zu Vesta – einem „trockenen“ Asteroiden – ist das zweite Ziel der Dawn-Mission ein „nasser“ Asteroid, der hinter der Frostgrenze liegt und vermutlich einen Wasseranteil von 15 bis 25 Prozent aufweist.

„Wir untersuchen mit einer Mission zwei sehr unterschiedliche Typen von Asteroiden“, betont DLR-Planetenforscher Prof. Ralf Jaumann.

Beide Himmelskörper sollen Aufschluss über die Entstehung unseres Sonnensystems geben, denn sie haben sich seit ihrer Entstehung vor viereinhalb Milliarden Jahren vermutlich kaum mehr verändert.

Quelle und vollständige Infos hier: http://dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-12859//usetemplate-print/