Streßempfindlichkeit, Zuckerstoffwechsel und Gehirnfunktion hängen zusammen

Insbesondere chronischer Stress gilt als ein Risikofaktor für die Entwicklung psychischer Erkrankungen wie beispielsweise depressive Störungen. Zudem kann er sich negativ auf den Stoffwechsel und besonders auf den Zuckerstoffwechsel auswirken.

Nun haben Wissenschaftler der Klinik für Psychiatrie und Psychotherapie der Universitätsmedizin Mainz und des Deutschen Resilienz-Zentrums Mainz (DRZ) im Tiermodell untersucht, ob Stress, eine Störung des Zuckerstoffwechsels und psychische Symptome direkt und ursächlich miteinander verknüpft sind.

Ihre Untersuchungen zeigten, dass sich in zeitlichem Zusammenhang mit Stress eine Störung des Glukosestoffwechsels entwickeln kann, und zwar sowohl im Blut als auch im Gehirn. Demnach kann eine stressinduzierte Störung des Zuckerstoffwechsels mit der Entstehung von stressabhängigen psychischen Erkrankungen zusammenhängen.

Die Ergebnisse sind in der aktuellen Ausgabe der hochrangigen Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.

Das menschliche Gehirn benötigt selbst unter Ruhebedingungen sehr viel Energie: Die benötigte Menge beträgt das Zehnfache der Energiemenge, die alle übrigen Körperorgane zusammen verbrauchen. Die Hirnfunktionen sind damit in hohem Maße abhängig von einer optimalen Energiezufuhr. Die Aufnahme der Zuckerart Glukose aus dem Blut ist dabei besonders wichtig. Wenn sich das Gleichgewicht des Glukosestoffwechsels auch nur geringfügig verändert, reagiert das Gehirn sehr empfindlich.

Warum führt chronischer Stress bei manchen Personen zur Entwicklung psychischer Symptome, wie beispielsweise zu depressiver Stimmung oder einer Funktionsstörung des Gedächtnisses, während andere Menschen unter identischen Lebensbedingungen gesund bleiben und seelisch widerstandsfähig, also resilient sind?

Welche Rolle spielt chronischer Stress für die Entwicklung einer stressabhängigen Veränderung des Zuckerstoffwechsels, dem sogenannten Glukosestoffwechsel? Und sind Stress, Glukosestoffwechsel und psychische Veränderungen möglicherweise sogar ursächlich miteinander verknüpft?

Diesen Fragen widmeten sich Wissenschaftler einer Arbeitsgruppe um Univ.-Prof. Dr. Marianne Müller, Leiterin Translationale Psychiatrie der Klinik für Psychiatrie und Psychotherapie der Universitätsmedizin Mainz, gemeinsam mit interdisziplinären Kooperationspartnern.

Für die hier vorgestellte Studie beobachteten die Forscher in einem Tiermodell für sozialen Stress über längere Zeit die Veränderungen im Glukosestoffwechsel. Sie konnten zeigen, dass sich in zeitlichem Zusammenhang mit Stress sowohl im Blut als auch in jenen Gehirnarealen, die für Lernen und Gedächtnisfunktionen verantwortlich sind, eine Störung des Glukosestoffwechsels entwickeln kann:

Die gestressten Tiere wiesen erhöhte Blutzuckerwerte und eine deutliche Störung der Glukoseregulation im Gehirn auf – und das sogar noch nach Beendigung der Stressphase. Für ihre Forschungen nutzten die Wissenschaftler den aus der Diabetesbehandlung bekannten SGLT-2-Hemmer Empagliflozin. Dieser sorgt dafür, dass vermehrt Glukose mit dem Urin ausgeschieden wird, wodurch der Blutzuckerspiegel sinkt. Durch die Behandlung mit Empaglifozin normalisierte sich die Störung des Glukosestoffwechsels.

Bei der detaillierten Auswertung der Daten machten die Mainzer Wissenschaftler aber eine interessante Entdeckung: Nicht alle Tiere reagierten gleich stark. Innerhalb der Gruppe der gestressten Tiere gab es Untergruppierungen.

So beobachteten sie sehr empfindliche, so genannte suszeptible Tiere, die auf den Stress mit einer deutlichen Störung des Glukosestoffwechsels, konkret mit einer erhöhten Glukosekonzentration, reagierten. Diese ging mit einer Störung der Gedächtnisfunktion einher. Eine andere Untergruppe, jene der resilienten Tiere, zeigte hingegen keine nennenswerten Veränderungen und schnitt in den Untersuchungen ähnlich gut ab wie die Kontrollgruppe.

Wie die Wissenschaftler zudem herausfanden, ging mit der Behandlung mit Empagliflozin nur in der suszeptiblen Untergruppe von Tieren eine verbesserte Gedächtnisleistung einher. In der Untergruppe der „resilienten“ Tiere, bei denen der Stress keine erhöhte Glukosekonzentration ausgelöst hatte, führte die Gabe von Empagliflozin hingegen sogar zu schlechteren Gedächtnisleistungen.

„Diese Ergebnisse verdeutlichen, wie wichtig eine Bewertung der individuellen Faktoren im Rahmen therapeutischer Entscheidungen ist. Durch den frühzeitigen Einsatz von personalisierter, also einer individuell maßgeschneiderten Medizin lassen sich möglicherweise Spätfolgen von Stress vermindern.

Da auch Menschen auf widrige Lebenssituationen in unterschiedlichem Maße verletzlich (vulnerabel) oder seelisch widerstandsfähig (resilient) reagieren, sind Erkenntnisse über einen ursächlichen Zusammenhang dieser Faktoren von hoher medizinischer Relevanz. Dies unterstreicht auch die Tatsache, dass Stress und psychische Erkrankungen in der Bevölkerung immer weiter verbreitet sind“, erklärt Prof. Dr. Marianne Müller.

„In der vorliegenden Studie haben wir uns zu Nutze gemacht, dass es bei Mäusen ähnlich ist wie beim Menschen: Ein Teil der Tiere reagiert relativ gelassen auf chronischen Stress, während eine andere Gruppe durch den Stress deutliche Verhaltensänderungen und insbesondere eine Störung ihrer Gedächtnisleistung aufweist. Für uns ist es wichtig zu hinterfragen, ob unsere Befunde auch auf den Menschen übertragbar sind. Es gilt herauszufinden, ob wir durch unsere Erkenntnisse dazu beitragen können, die Therapiemöglichkeiten für stressassoziierte Erkrankungen langfristig zu verbessern“, erklären Dr. Michael van der Kooij und Tanja Jene, beide gemeinsame Erstautoren der Studie.

Quelle: Pressemitteilung der Universitätsmedizin Mainz


Läßt sich Darmkrebs überlisten? Wie zerstört man Tumorzellen durch Streß?

Lassen sich Krebszellen überlisten? Ist es möglich, ein zytostatisches in ein zytotoxisches Zellprogramm umzuwandeln – und so den Zellzyklus nicht nur zu stoppen, sondern den Tod der Krebszellen herbeizuführen?

Wie lässt sich ein durch Chemotherapie ausgelöstes, für Darmkrebszellen tödliches Programm mit neuen Medikamenten verstärken?

Antworten auf diese Fragen hat ein Forscherteam um Univ.-Prof. Dr. Oliver H. Krämer vom Institut für Toxikologie an der Universitätsmedizin Mainz gefunden. Ihre Forschungsergebnisse zeigen erstmals, wie die Zellzyklusregulation und die Antwort von Zellen auf eine gestörte Verdopplung ihrer DNA zu einer neuen Therapiestrategie von Darmkrebs führen können. S

ie sind nachzulesen in der Februarausgabe der namhaften Fachzeitschrift „Nature Communications“.

Der Zellzyklus ist ein komplizierter Prozess. All seine Phasen lassen sich durch bestimmte Faktoren hemmen oder fördern. Zytostatika verzögern oder unterbrechen das Fortschreiten der Zellteilung. Möglich wird dies durch Zellzyklus-Kontrollpunkte, sogenannte Checkpoints. Diese sorgen dafür, dass der nächste Schritt im Zellzyklus erst dann erfolgt, wenn der Vorhergehende abgeschlossen ist. Indem sie Dauer und Abfolge der Phasenübergänge regulieren, schützen sie die Unversehrtheit des Erbguts und verhindern eine „Entartung“ gesunder Zellen.

Für die Wissenschaft sind diese Checkpoints interessant, weil hier sowohl die Möglichkeit besteht, den Zellzyklus zu stoppen (Arretierung) als auch den programmierten Zelltod (Apoptose) einzuleiten. Indem der Zellzyklus beeinflusst wird und Checkpoints in sich schnell teilenden Krebszellen ausgeschaltet werden, können diese therapeutisch eliminiert werden.

Genau an diesem Punkt haben die Mainzer Wissenschaftler für die hier vorgestellte Studie angesetzt. Professor Krämer und sein Team hatten es sich für die Studie zur Aufgabe gemacht, die Gene-Expression von Zellen, also welche Gene tatsächlich aktiv sind, zu analysieren und die Frage zu beantworten, ob und wie sich ein zytostatisches in ein zytotoxisches Zellprogramm umwandeln lässt. Ihr Ziel war der Zelltod, nicht nur der Stopp des Zellzyklus.

Ihre Untersuchungen ergaben Folgendes: Wird der Zelle das Zytostatikum Hydroxyurea zugeführt, werden ihre Funktionsabläufe gestört: Sie produziert eine nur unzureichende Menge an DNA-Bausteinen. In Folge dessen kommt es zu einem geregelten Stopp des Zellzyklus. Wenn der Zellzyklus gebremst wird, ändert sich die Ableserate bestimmter Gene.

Dieser Prozess unterliegt der Steuerung durch die Enzymgruppe der Histon-Deacetylasen (HDACs), welche 18 Proteine umfasst. Diese Moleküle regulieren als sog. epigenetische Modulatoren die Genexpression ohne die Abfolge der DNA-Basenpaare und damit die Verschlüsselung der Erbinformation zu verändern.

Hierfür modulieren HDACs die Markierung von wichtigen Proteinen mit Acetylresten. Eine neu von Professor Krämer entdeckte Funktion der HDACs besteht darin, dass sie PR130, eine Untereinheit des Enzyms Phosphatase-2A (PP2A), unterdrücken. Dieses reguliert einen essentiellen biologischen Prozess, das reversible Anhängen einer Phosphatgruppe an Proteine. PR130 ist ein sehr kritischer Regulator. Denn seine Anwesenheit ist entscheidend dafür verantwortlich, ob und wie stark die Phosphatgruppen übertragenden Checkpoint-Kinasen den Zellzyklus bei Gabe von Hydroxyurea anhalten können. „Durch die Gabe von klinisch erprobten und nebenwirkungsarmen Substanzen, die gegen eine Untergruppe der Histondeacetylasen (HDAC-Inhibitoren) wirken, gelang es uns sogar, den Krebszellen gänzlich die Kontrolle über ihren Zyklus zu entziehen“, erläutert Univ.-Prof. Dr. Oliver H. Krämer vom Institut für Toxikologie an der Universitätsmedizin Mainz.

Wie die Wissenschaftler um Professor Krämer im Rahmen ihrer Studie feststellten, modulieren speziell die HDACs HDAC1 und HDAC2 über PR130 kritische Signalwege, die bei Gabe von Hydroxyurea für das Überleben von Krebszellen wichtig sind. Den Forschern ist es gelungen, durch die Kombination von Hydroxyurea mit HDAC-Inhibitoren ein therapeutisch erwünschtes Zelltodprogramm – welches die sogenannte mitotische Katastrophe und die Apoptose umfasst – Tumorzellen abzutöten.

„Diese Forschungsergebnisse zeigen erstmals, wie die Zellzyklusregulation und die Antwort von Zellen auf replikativen Stress spezifisch durch zwei HDACs und PR130 reguliert werden“, so Professor Krämer. „Da Darmkrebs eine sehr häufige Tumorerkrankung darstellt, könnten derzeit zur Behandlung eingesetzte Chemotherapeutika in Kombination mit HDAC Inhibitoren eine neue Therapiestrategie darstellen. Dies wollen wir in Zukunft erforschen“.

Infos zur Studie:
„HDAC1 and HDAC2 integrate checkpoint kinase phosphorylation and cell fate through the phosphatase-2A subunit PR130.”; Göder A, Emmerich C, Nikolova T, Kiweler N, Schreiber M, Kühl T, Imhof D, Christmann M, Heinzel T, Schneider G, Krämer OH; Nature Communications. 2018 Feb 22; 9(1):764; doi: 10.1038/s41467-018-03096-0.

Kontakt: Univ.-Prof. Dr. Oliver H. Krämer,
Institut für Toxikologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz,
Geb. 905, 15. OG, Obere Zahlbacher Straße 67, 55131 Mainz
Telefon: 06131-17-9218, Fax: 06131-17-9023, E-Mail: okraemer@uni-mainz.de

Quelle: Universitätsmedizin Mainz