eROSITA: Die Suche nach der Dunklen Energie

Kosmischer Kraftstoff beschleunigt die Ausdehnung des Alls

Am 21. Juni 2019 wird die Raumsonde Spektrum-Röntgen-Gamma (SRG) von der kasachischen Steppe aus zu einer spannenden Reise aufbrechen. Eine Proton-Rakete bringt die Raumsonde vom Kosmodrom Baikonur mit dem deutschen Röntgenteleskop eROSITA und seinem russischen Partnerinstrument ART-XC zu ihrem 1,5 Millionen Kilometer entfernten Ziel – dem Lagrange-Punkt 2.

Von diesem Ort des Kräftegleichgewichts aus wird eROSITA (siehe Foto) die gigantischste kosmische Inventur des heißen Universums beginnen.

Das deutsche Weltraumteleskop wird dafür mit seinen sieben Röntgendetektoren den gesamten Himmel beobachten und nach heißen Quellen wie Galaxienhaufen, aktiven Schwarzen Löchern, Supernova-Überresten, Röntgendoppelsternen sowie Neutronensternen suchen und sie kartieren.

„eROSITA’s Röntgenaugen sind die besten, die jemals auf einem Weltraumteleskop gestartet sind. Ihre einmalige Kombination aus Lichtsammelfläche, Gesichtsfeld und Auflösung machen sie circa 20-mal so empfindlich wie das deutsche Teleskop ROSAT in den 1990-er Jahren – High-Tech made in Germany.

So wird eROSITA uns dabei helfen, die Struktur des Kosmos und dessen Entwicklung besser zu verstehen. Insbesondere wird das deutsche Teleskop aber dazu beitragen, das Rätsel der Dunklen Energie zu lösen“, betont Dr. Walther Pelzer, Vorstand im Dt. Zentrum für Luft- und Raumfahrt (DLR) zuständig für das Raumfahrtmanagement, mit dessen Unterstützung eROSITA vom Max-Planck-Institut für Extraterrestrische Physik (MPE) gebaut wurde.

Unser Universum dehnt sich seit dem Urknall kontinuierlich aus. Noch bis in die 1990er-Jahre hatte man gedacht, dass diese kosmische Expansion langsamer wird und irgendwann zum Stillstand kommt.

Doch dann kamen die Astrophysiker Saul Perlmutter, Adam Riess und Brian Schmidt. Sie beobachteten Sternenexplosionen, die weit sichtbar sind und immer gleich viel Licht abstrahlen. Sie vermaßen ihre Entfernungen und konnten es selbst kaum glauben.

„Die beobachteten Supernovae Typ1a waren weniger hell, als man eigentlich erwartet hatte. Damit war klar: Das Universum wird bei seiner Ausdehnung nicht langsamer – ganz im Gegenteil. Es nimmt Fahrt auf und wird mit wachsender Geschwindigkeit immer weiter auseinandergetrieben“, erklärt Dr. Thomas Mernik, eROSITA-Projektleiter beim DLR Raumfahrtmanagement.

Mit dieser Erkenntnis haben die drei Forscher die Wissenschaft auf den Kopf gestellt und bekamen im Jahr 2011 den Nobelpreis für Physik verliehen.

Doch Saul Perlmutter, Adam Riess und Brian Schmidt lassen uns mit einer entscheidenden Frage zurück: „Welcher ‚kosmische Kraftstoff‘ treibt das Universum an? Weil man diese Frage bis heute nicht beantworten kann und seine Zutaten nicht kennt, nannte man diesen Beschleuniger einfach Dunkle Energie. eROSITA wird nun versuchen, dem Grund dieser Beschleunigung auf die Spur zu kommen“, erläutert Thomas Mernik. 

In Wirklichkeit wissen wir nicht viel über unser Universum. Wir kennen gerade einmal die Zutaten von vier Prozent seiner Energiedichte, denn so winzig ist der Anteil von „normaler“ Materie wie Protonen und Neutronen an der „Rezeptur des Weltalls“.

Die anderen 96 Prozent sind ein Rätsel. Man vermutet heute, dass 26 Prozent die Dunkle Materie beisteuert. Der größte Anteil mit geschätzten 70 Prozent macht allerdings die Dunkle Energie aus. Um ihr auf die Spur zu kommen, müssen Wissenschaftler etwas unvorstellbar Großes und extrem Heißes beobachten:

„Galaxienhaufen setzen sich aus bis zu einigen tausend Galaxien zusammen, die sich mit unterschiedlichen Geschwindigkeiten im gemeinsamen Schwerefeld bewegen. In ihrem Inneren sind diese merkwürdigen Gebilde von einem dünnen, unvorstellbar heißen Gas durchdrungen, das sich durch seine Röntgenstrahlung beobachten lässt.

Genau hier kommen die Röntgenaugen von eROSITA ins Spiel. Mit ihnen beobachten wir Galaxienhaufen und schauen, wie sie sich im Universum bewegen und vor allem, wie schnell sie das tun. Diese Bewegung wird uns dann hoffentlich mehr über die Dunkle Energie verraten“, erklärt DLR-Projektleiter Thomas Mernik.

Quelle (Text/Fotos) und FORTSETZUNG der Meldung hier: https://www.dlr.de/dlr/presse/desktopdefault.aspx/tabid-10172/213_read-36232/year-all/#/gallery/35604


Raumfahrtjahr 2019: Wie der Mond Albert Einstein half, zu Weltruhm zu gelangen

Das Raumfahrtjahr 2019 steht ganz im Licht des 50. Jahrestags der ersten bemannten Mondlandung. Doch ein zweites Ereignis, bei dem der Erdbegleiter ebenfalls eine bedeutsame Rolle am Firmament spielte, erregte ein weiteres halbes Jahrhundert zuvor weltweit vor allem in den Kreisen der Forschung enorme Aufmerksamkeit:

Am 29. Mai 2019 jährt sich zum 100. Mal ein Tag, der in die Geschichte der Wissenschaft wie kaum ein anderer eingegangen ist:

BILD: Albert Einstein mit Arthur Eddington und Kollegen

An jenem Donnerstag gelang es zwei englischen Forschergruppen unter Leitung der Astronomen Arthur Stanley Eddington (1882–1944) und Andrew Claude de la Cherois Crommelin (1865–1939), anhand einer totalen Sonnenfinsternis nachzuweisen, dass die Sonne mit ihrer Masse tatsächlich den umgebenden Raum und dadurch den Weg von Lichtstrahlen krümmt.

„Genau so, wie es vier Jahre zuvor Albert Einstein in seiner Allgemeinen Relativitätstheorie qualitativ und quantitativ vorhergesagt hatte“, erklärt der Astronom und Planetenforscher Dr. Manfred Gaida vom Raumfahrtmanagement des Deutschen Zentrums für Luft- und Raumfahrt (DLR).

„Dass die Masse der Sonne tatsächlich und nachweisbar den Raum verbiegt und ihre Anziehung keine Kraft, sondern eine Eigenschaft des Raumes selber ist, war eine völlig neue, befremdliche Vorstellung von unserer Welt, die jenseits jeglicher Alltagserfahrung lag“, so der DLR-Wissenschaftler weiter.

Dass Lichtstrahlen beziehungsweise Lichtteilchen in der Nähe von Massen abgelenkt werden, vermutete schon gut 200 Jahre zuvor der große Physiker Isaac Newton (1643–1727), als er im Jahre 1704 im dritten Band seines Werkes „Opticks“ dem Leser die fiktive Frage stellte, ob Körper nicht durch ihre Anziehungskraft auf Lichtteilchen wirken und sie demzufolge ablenken – und das umso stärker, je geringer der gegenseitige Abstand ist.

Nachweisen ließ sich allerdings diese kühne Vermutung Newtons nicht, und es dauerte weitere hundert Jahre, bis 1801 der Münchner Astronom Johann Georg von Soldner (1776–1833) erstmals einen Wert für diese Newtonsche Lichtablenkung am Sonnenrand publizierte: nur 0,84 Bogensekunden ‒ entsprechend einer Strecke von nur zwei Kilometern auf der Mondoberfläche aus Erddistanz – sollte sie betragen, ein Wert, der damals unterhalb der Nachweisgrenze lag.

BILD: Drei Möglichkeiten der Ablenkung von Lichtstrahlen durch große Massen

So brauchte es weitere rund 100 Jahre, bis Albert Einstein (1879–1955) darüber nachdachte, wie sich die geometrische Optik mit der Gravitationstheorie verknüpfen lässt. Im Juni 1911 schrieb er in den „Annalen der Physik“:

„Es wäre dringend zu wünschen, daß sich Astronomen der hier aufgerollten Frage annähmen, auch wenn die im vorigen gegebenen Überlegungen ungenügend fundiert oder gar abenteuerlich erscheinen sollten. Denn abgesehen von jeder Theorie muß man sich fragen, ob mit den heutigen Mitteln ein Einfluß der Gravitationsfelder auf die Ausbreitung des Lichtes sich konstatieren läßt.“

Und er selber berechnete auch den Wert für die Ablenkung quantitativ zu 0,83 Bogensekunden, der nahezu mit dem Wert Soldners übereinstimmte, dem jedoch anders als bei diesem das Relativitäts- und Äquivalenzprinzip zugrunde lag und nicht bloß die Anziehungskraft einer Masse.

Anfang des 20. Jahrhunderts war die astronomische Messtechnik immerhin soweit fortgeschritten, dass es realistisch schien, einen winzigen Ablenkungseffekt von knapp einer Bogensekunde auf Fotoplatten nachweisen zu können. Mit lichtstarken Teleskopen war man auch in der Lage, helle Sterne am Tageshimmel zu sehen, doch solche Beobachtungen wurden als Nachweismöglichkeit wegen der störenden Nebeneffekte bald verworfen.

Die Beobachtung von totalen Sonnenfinsternissen schien hier erfolgversprechender. Bei diesen Ereignissen dunkelt der Mond die Sonnenscheibe minutenlang völlig ab, und Fixsterne in unmittelbarer Nähe der vom Mond bedeckten Sonne leuchten auf.

Einstein drängte den mit ihm befreundeten Berliner Astronomen Erwin Finlay-Freundlich den späteren Initiator des Potsdamer Einsteinturms, eine solche Überprüfung durchzuführen. Doch Freundlichs Unternehmung in Russland kurz nach Beginn des Ersten Weltkriegs missglückte, ebenso wie eine Expedition des Amerikaners William Wallace Campbell (1862-1938). Der eine wurde auf der Krim als Feind inhaftiert, der andere hatte südlich von Kiew schlechtes Wetter.

Letztlich erwiesen sich die misslungenen Expeditionen auch für Einstein als vorteilhaft. Denn in seinen Überlegungen steckte noch ein Fehler, der zu einer nur halb so großen Ablenkung führte, als sie in Wirklichkeit war. Hätte man 1914 den wahren Naturwert gemessen, wäre Einstein selber verwundert gewesen und seine kühne Arbeit von seinen Kollegen möglicherweise als Irrtum eingeschätzt worden.

Erst im Zuge seiner Veröffentlichung der Allgemeinen Relativitätstheorie im Jahre 1915 quantifizierte er die Ablenkung exakt auf 1,75 Bogensekunden am Sonnenrand. Kurz nachdem Albert Einstein im November 1915 seine Allgemeine Relativitätstheorie dann in den Annalen der Physik in deutscher Sprache veröffentlicht hatte, widmete sich der niederländische Astronom Willem de Sitter (1872–1934) in einer dreiteiligen englischsprachigen Arbeit den astronomischen Konsequenzen der Einsteinschen Gravitationstheorie.

Diese Arbeit bestärkte die englischen Astronomen Arthur Eddington und Frank Dyson (1868–1939) in ihrem Interesse an Einsteins Theorie, die es anhand von experimentellen Messungen zu bestätigen oder zu verwerfen galt. Darunter auch die obskure Lichtablenkung, bei der die Sterne, bezogen auf die Position des Sonnenrandes, tangential um 1,75 Bogensekunden weiter entfernt erscheinen sollten im Vergleich zu ihrer nächtlichen Position in einem Himmelsfeld ohne Sonne.

Zwei britische Expeditionen machen sich auf den Weg Nachdem ein zweiter Versuch Campbells im Juni 1918 in den USA fehlgeschlagen war, kam die Stunde der englischen Astronomen. Frank Dyson war hierbei die treibende Kraft, Eddington als führenden Theoretiker für diese besondere Aufgabe vor den Kriegswirren abzuschirmen und zwei Expeditionen zu einer fast sieben Minuten dauernden totalen Sonnenfinsternis am 29. Mai 1919 vorzubereiten. 

Quelle (Text/Fotos) und FORTSETZUNG der Meldung hier: https://www.dlr.de/dlr/presse/desktopdefault.aspx/tabid-10172/213_read-33808/year-all/#/gallery/34363


Bereschit-Sonde schlug auf dem Mond auf

​Die israelische Mondsonde Bereschit ist am Donnerstag (11.4.) leider nicht erfolgreich auf der Mondoberfläche gelandet. Die Sonde hatte aus 22 Kilometer Höhe noch ein letztes Selfie mit dem Mond aufgenommen (siehe Foto), bevor die Verbindung des Kontrollzentrums zur Sonde abriss und diese mit hoher Geschwindigkeit auf dem Mond aufschlug.

Trotz der gescheiterten Landung erhielt das Team den mit einer Million US-Dollar (ca. 884 Mio. Euro) dotierten Lunar XPRIZE Moonshot Award als Auszeichnung für das erste privatfinanzierte Projekt, das den Mond erreicht hat.

Der israelische Premierminister Benjamin Netanyahu, der am Donnerstag im Kontrollzentrum die geplante Landung live verfolgte, sagte gestern zu Beginn der wöchentlichen Kabinettssitzung:

„Am Wochenende hat der israelische Staat wieder Geschichte geschrieben. Er wurde eines von sieben Ländern, das die Umlaufbahn des Mondes und eines von vier Ländern, das die Oberfläche des Mondes erreicht hat, auch wenn dies nicht optimal gelang.

Wir planen, „Bereschit 2“ zu starten. Der israelische Staat, der sich am Start der ersten Sonde beteiligte, wird sich auch am Start der zweiten beteiligen. Und ich hoffe, das nächste Mal wird es ein Erfolg. In diesem Falle wären wir dann wirklich das vierte Land, das erfolgreich auf dem Mond gelandet ist.

Durch Misserfolg werden wir nicht gehindert. Der Unterschied zwischen Gewinnern und Verlierern ist, dass wir nicht aufgeben.“

Quelle: https://embassies.gov.il/berlin/NewsAndEvents/Pages/Mondsonde-Bereschit-leider-nicht-erfolgreich-gelandet.aspx  –  Foto: SpaceIL


Live-Übertragung: Heute Abend landet die israelische „Bereschit“ auf dem Mond

​Die Mondsonde „Bereschit“ soll in Kürze sanft auf der Mondoberfläche aufsetzen. Wenn alles nach Plan verläuft, wird die Landung heute (11.4.) um 20.30 Uhr MESZ stattfinden. Israel wird damit das vierte Land sein, das ein Objekt weich auf den Mond gebracht hat. 

„Bereschit“ wurde am 22. Februar ins All geschossen und drehte sich dann auf elliptischen Bahnen um die Erde in Richtung Mond. Am 4. April wurde „Bereschit“ vom Mondorbit quasi „eingefangen“ und befindet sich seitdem in der Mondumlaufbahn, wo es sich in elliptischen Bahnen dem Mond nähert.

Bis zur Landung wird sie 6,5 Millionen Kilometer zurückgelegt haben. Kurz vor der Landung werden die Triebwerke der Mondsonde in Gegenrichtung zur Mondoberfläche angeworfen, wodurch die Geschwindigkeit der Sonde von 6000 km/h auf 0 km/h reduziert wird. Die letzten fünf Meter befindet sich „Bereschit“ im freien Fall, bevor sie – hoffentlich – sanft aufsetzt.

„Bereschit“ soll 72 Stunden auf der Mondoberfläche bleiben und Informationen zum Magnetfeld des Mondes sammeln. An Bord befinden sich auch einige jüdische und israelische Dokumente und Symbole.

„Bereschit“ ist ein Projekt von SpaceIL und Israel Aerospace Industries (IAI). Mit Gesamtkosten von 84 Millionen Euro ist sie die bislang preiswerteste Raumsonde ihrer Art.

Die Landung wird ab ca. 20.30 Uhr live auf unserer Facebook-Seite übertragen: https://www.facebook.com/IsraelinGermany/


Können Organismen auf dem Mars überleben?

Die Erde ist ein ganz besonderer Planet: Sie ist der einzige Himmelskörper im Sonnensystem, von dem wir wissen, dass er Leben beherbergt. Oder gibt es doch weitere Planeten und Monde, auf denen Leben vorstellbar wäre?

Der Mars wird hier immer zuerst genannt, er hat viele Eigenschaften mit der Erde gemeinsam und in seiner geologischen Vergangenheit strömte auch Wasser über seine Oberfläche. Doch heute sind die Bedingungen auf dem Mars so extrem, dass es schwer vorstellbar ist, dass Organsimen, wie wir sie von der Erde kennen, auf dem kalten und trockenen Wüstenplaneten überleben könnten.

Herauszufinden, ob es doch möglich ist, war eines der Ziele des vom Deutschen Zentrum für Luft- und Raumfahrt koordinierten Experiments BIOMEX (BIOlogy and Mars EXperiment) auf der Internationalen Raumstation ISS. Jetzt liegen die Ergebnisse vor:

Tatsächlich sind manche irdische biologische Substanzen und Strukturen sehr hart im Nehmen. Sie überlebten grenzwertige Umweltbedingungen während eines 18-monatigen Stresstests im Weltall. Dabei waren Proben unterschiedlicher Organismen wie Bakterien, Algen, Flechten und Pilze auf einer Außenplattform der ISS insgesamt 533 Tage dem Vakuum, intensiver UV-Strahlung und extremen Temperatur-Unterschieden ausgesetzt.

BILD: Die EXPOSE-R-Versuchsanordnung mit BIOMEX auf der ISS

„Einige der Organismen und Biomoleküle haben im offenen Weltraum eine enorme Strahlungsresistenz gezeigt und kehrten tatsächlich als ‚Überlebende‘ aus dem All zur Erde zurück“, zeigt sich Dr. Jean-Pierre Paul de Vera vom DLR-Institut für Planetenforschung in Berlin-Adlershof beeindruckt. Dem Astrobiologen oblag die wissenschaftliche Leitung von BIOMEX:

„Wir haben u.a. Archäen, also einzellige Mikroorganismen, wie es sie auf der Erde seit über dreieinhalb Milliarden Jahren im salzigen Meerwasser gibt, untersucht. Unsere ‚Probanden‘ sind Verwandte, die aus dem Permafrost der Arktis isoliert wurden. Sie haben unter Weltraumbedingungen überlebt und sind zudem mit unseren Instrumenten detektierbar. Solche Einzeller wären Kandidaten für Lebensformen, die wir uns auch auf dem Mars vorstellen könnten.“

Leben auf dem Mars scheint nicht unmöglich zu sein Mit diesem Ergebnis wurde das Hauptziel des Experiments erreicht: Prinzipiell scheinen manche Lebewesen, die auf der Erde unter extremen Umweltbedingungen vorkommen, sogenannte „extremophile“ Organismen, auch auf dem Mars existieren zu können.

„Das bedeutet freilich noch lange nicht, dass Leben auch wirklich auf dem Mars vorkommt“, schränkt de Vera ein. „Aber die Suche danach ist nun mehr denn je die stärkste Triebfeder für die nächste Generation von Raumfahrtmissionen zum Mars.“

Quelle und Fortsetzung der Meldung hier: https://www.dlr.de/dlr/presse/desktopdefault.aspx/tabid-10172/213_read-32959


Israelische Raumsonde fotografierte die Erde

Israels Raumsonde Bereschit hat am 5. März aus 60.000 Kilometer Entfernung ein Foto von der Erde gemacht. Australien ist auf dem Bild deutlich zu erkennen. Auf der ebenfalls gut

sichtbaren Plakette, die an Bereschit angebracht ist, steht auf Hebräisch „Das Volk Israel lebt“ und auf Englisch „Kleines Land, große Träume“.

Die Raumsonde, die von der israelischen NGO (Nichtregierungsorganisation) SpaceIL entwickelt wurde, wurde am 22. Februar 2019 ins All geschossen. Am 11. April soll sie voraussichtlich auf dem Mond landen. Israel wäre dann das 4. Land, das den Mond erreicht hat.
.
Quelle (Text / Foto): https://embassies.gov.il/berlin/NewsAndEvents/Pages/Mondesonde-Bereschit-macht-Selfie-vom-Mond.aspx#p

Der Mars-Maulwurf des DLR hämmert sich erstmals in den Untergrund des Roten Planeten

Am 28. Februar 2019 hat sich der Marsmaulwurf des DLR (Deutschen Zentrums für Luft- und Raumfahrt) erstmals vollautomatisch in den Marsboden gehämmert. In einem ersten Schritt drang er über eine Phase von vier Stunden mit 4000 Hammerschlägen etwa 18 bis 50 Zentimeter in den Marsboden ein.

GRAFIK: Nach ihrem Start landete die NASA-Sonde InSight etwas nördlich des Mars-Äquators und entfaltete seine Solarpanele. (Foto: NASA/JPL-Caltech)

„Bei seinem Weg in die Tiefe ist der Maulwurf anscheinend auf einen Stein getroffen, hat sich um etwa 15 Grad geneigt und diesen beiseitegedrückt oder sich an ihm vorbeigeschoben“, sagt der wissenschaftliche Leiter des HP3-Experiments Prof. Tilman Spohn:

„Anschließend hat er sich in fortgeschrittener Tiefe gegen einen weiteren Stein gearbeitet, bis die geplante vierstündige Betriebszeit der ersten Sequenz abgelaufen war.“

Bei Tests auf der Erde zeigte sich, dass die stabförmige Rammsonde in der Lage ist, kleinere Steine zur Seite zu schieben, was allerdings sehr zeitintensiv ist.

Nach einer Abkühlpause wollen die Forscher den Maulwurf in einer zweiten Sequenz für erneut vier Stunden weiterhämmern lassen. In den Folgewochen mit weiteren Abschnitten wollen sie bei ausreichend porösem Untergrund eine Zieltiefe von drei bis fünf Metern erreichen. 

Dabei zieht der Maulwurf hinter sich ein mit Temperatursensoren bestücktes, fünf Meter langes Flachbandkabel in den Marsboden hinein.

Die Sonde pausiert nach jedem Schritt für etwa drei Marstage (Sol), um nach dem mehrstündigen Hämmern mit Reibung und Hitzeentwicklung etwa zwei Tage abzukühlen und dann bei ausreichender Tiefe die Wärmeleitfähigkeit des Bodens zu messen.

„Dazu wird eine Folie in der Hülle des Maulwurfs mit bekannter elektrischer Leistung für einige Stunden geheizt“, erklärt DLR-Planetenforscher Dr. Matthias Grott: „Der gleichzeitig gemessene Anstieg der Temperatur der Folie gibt uns dann ein Maß für die Wärmeleitfähigkeit des unmittelbar umgebenden Bodens.“

Ergänzend misst das am InSight-Lander angebrachte Radiometer die Temperatur des Marsbodens an der Oberfläche, die von leichten Plusgraden bis fast minus hundert Grad Celsius schwankt.

Quelle und ausführlicher Text hier: https://www.dlr.de/dlr/presse/desktopdefault.aspx/tabid-10172/213_read-32400/#/gallery/33593